Matrix Ansatz, lattice paths and rook placements
نویسندگان
چکیده
We give two combinatorial interpretations of the Matrix Ansatz of the PASEP in terms of lattice paths and rook placements. This gives two (mostly) combinatorial proofs of a new enumeration formula for the partition function of the PASEP. Besides other interpretations, this formula gives the generating function for permutations of a given size with respect to the number of ascents and occurrences of the pattern 13-2, the generating function according to weak exceedances and crossings, and the n moment of certain q-Laguerre polynomials. Résumé. Nous donnons deux interprétations combinatoires du Matrix Ansatz du PASEP en termes de chemins et de placements de tours. Cela donne deux preuves (presque) combinatoires d’une nouvelle formule pour la fonction de partition du PASEP. Cette formule donne aussi par exemple la fonction génératrice des permutations de taille donnée par rapport au nombre de montées et d’occurrences du motif 13-2, la fonction génératrice par rapport au nombre d’éxcédences faibles et de croisements, et le n moment de certains polynômes de q-Laguerre.
منابع مشابه
2 7 N ov 2 00 8 Matrix Ansatz , lattice paths and rook placements
We give two combinatorial interpretations of the Matrix Ansatz of the PASEP in terms of lattice paths and rook placements. This gives two (mostly) combinatorial proofs of a new enumeration formula for the partition function of the PASEP. Besides other interpretations, this formula gives the generating function for permutations of a given size with respect to the number of ascents and occurrence...
متن کاملCombinatorics of the Three-Parameter PASEP Partition Function
We consider a partially asymmetric exclusion process (PASEP) on a finite number of sites with open and directed boundary conditions. Its partition function was calculated by Blythe, Evans, Colaiori, and Essler. It is known to be a generating function of permutation tableaux by the combinatorial interpretation of Corteel and Williams. We prove bijectively two new combinatorial interpretations. T...
متن کاملRook Placements in Young Diagrams and Permutation Enumeration
Abstract. Given two operators M and N subject to the relation MN −qNM = p, and a word w in M and N , the rewriting of w in normal form is combinatorially described by rook placements in a Young diagram. We give enumerative results about these rook placements, particularly in the case where p = (1−q)/q. This case naturally arises in the context of the PASEP, a random process whose partition func...
متن کاملq-Rook placements and Jordan forms of upper-triangular nilpotent matrices
The set of n by n upper-triangular nilpotent matrices with entries in a finite field Fq has Jordan canonical forms indexed by partitions λ ` n. We study a connection between these matrices and non-attacking q-rook placements, which leads to a combinatorial formula for the number Fλ(q) of matrices of fixed Jordan type as a weighted sum over rook placements. Résumé. L’ensemble des matrices triang...
متن کاملOn the Spectra of Simplicial Rook Graphs
The simplicial rook graph SR(d, n) is the graph whose vertices are the lattice points in the nth dilate of the standard simplex in R, with two vertices adjacent if they differ in exactly two coordinates. We prove that the adjacency and Laplacian matrices of SR(3, n) have integral spectra for every n. We conjecture that SR(d, n) is integral for all d and n, and give a geometric construction of a...
متن کامل